Chapter 1 Complex Vectors

1.1 Complex algebra

A complex number is represented by $c=a+j b$, where a and b indicate the real and imaginary part of the complex number c. j is the imaginary number defined by $j^{2}=-1$. The complex number can be written in phaser form as:

$$
\begin{equation*}
c=a+j b=|c| e^{j \phi}=|c| \cos \phi+j|c| \sin \phi \tag{1.1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
|c|=\sqrt{a^{2}+b^{2}} \tag{1.1.2}
\end{equation*}
$$

is the magnitude of c and

$$
\begin{equation*}
\phi=\tan ^{-1}\left\{\frac{b}{a}\right\} \tag{1.1.3}
\end{equation*}
$$

is the phase of c.

The complex conjugate of c is indicated by c^{*} and is defined by

$$
\begin{equation*}
c^{*}=a-j b \tag{1.1.4}
\end{equation*}
$$

1.2 Complex representation of Time-Harmonic scalars

Consider a time-harmonic real physical quantity $V(t)$ that varies sinusoidal with time.

$$
\begin{equation*}
V(t)=V_{0} \cos (\omega t+\phi) \tag{1.2.1}
\end{equation*}
$$

where V_{0} is the amplitude, ω is the angular frequency and ϕ is the phase of $V(t)$. Note that $\omega=2 \pi f$, where f is the frequency.

Fig.1.1.1 A time-harmonic function $V(t)$

The relation between the real physical quantity $V(t)$ and the phaser notation is directly related by

$$
\begin{equation*}
V(t)=R e \|\left|V e^{j \omega t}\right| \tag{1.2.2}
\end{equation*}
$$

where $\operatorname{Re} \mid$ ¢ means taking the real part of the quantity in the braces \mid and $V=V_{0} e^{j \phi}$. For simplicity, $\operatorname{Re} \|\left. l() e^{j \omega t}\right|^{\prime} \quad$ can be omitted in writing and thus,

$$
\begin{equation*}
V(t) \quad \text { (is equivalent to }) \leftrightarrow V \text { (Phaser notation) } \tag{1.2.3}
\end{equation*}
$$

It should be noted that, $V(t)$ is a real function of t , but V is a complex function.

Using the above rule of equivalence, we find

$$
\begin{equation*}
V(t)+U(t) \leftrightarrow V+U \tag{1.2.3}
\end{equation*}
$$

It can also be shown that

$$
\begin{equation*}
\frac{\partial}{\partial t} V(t) \leftrightarrow j \omega V \tag{1.2.4}
\end{equation*}
$$

because

$$
\begin{equation*}
\frac{\partial}{\partial t} V(t)=-\omega V_{0} \sin (\omega t+\phi)=R e \|\left. j \omega V_{0} e^{j \phi} e^{j \omega t}\right|^{\|} \tag{1.2.5}
\end{equation*}
$$

Therefore, $j \omega$ can replace the tome derivative $\partial / \partial t$ in the complex representation of time-harmonic quantities.

The rule of equivalence of time-harmonic quantities should not be used carried out too far. For example,

$$
\begin{equation*}
V(t) U(t) \neq(\text { is not equivalent to }) V U \tag{1.2.6}
\end{equation*}
$$

1.3 Time Average

The time average value of a time-harmonic quantity is always zero.

$$
\begin{equation*}
\langle V(t)\rangle \equiv \frac{1}{T} \bigsqcup_{0}^{T} V_{0} \cos (\omega t+\phi) d t=0 \tag{1.3.1}
\end{equation*}
$$

However, the time-average value for the product of two-harmonic quantities is not always zero. For instance,

$$
\begin{equation*}
\left.\left.\left\langle V^{2}(t)\right\rangle \equiv \frac{1}{T}\right]_{0}^{T} V_{0}^{2} \cos ^{2}(\omega t+\phi) d t=\frac{1}{T}\right]_{0}^{T} V_{0}^{2} \left\lvert\,\left(\frac{1}{2}+\frac{1}{2} \cos (2 \omega t+2 \phi)\right)^{3} d t=\frac{V_{0}^{2}}{2}\right. \tag{1.3.4}
\end{equation*}
$$

which is not zero.
Consider complex vectors $\boldsymbol{A}=\boldsymbol{A}_{R}+j \boldsymbol{A}_{I}$ and $\boldsymbol{B}=\boldsymbol{B}_{R}+j \boldsymbol{B}_{I}$. Their time-domain counterparts can be written as

$$
\begin{equation*}
\boldsymbol{A}(t)=\operatorname{Re}\left\{\boldsymbol{A} \boldsymbol{e}^{j \omega t}\right\}=\boldsymbol{A}_{R} \cos \omega t-\boldsymbol{A}_{I} \sin \omega t \tag{1.3.5}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{B}(t)=\operatorname{Re}\left\{\boldsymbol{B} e^{j \omega t}\right\}=\boldsymbol{B}_{R} \cos \omega t-\boldsymbol{B}_{I} \sin \omega t \tag{1.3.6}
\end{equation*}
$$

The cross product of $\boldsymbol{A}(t)$ and $\boldsymbol{B}(t)$ then becomes

$$
\begin{equation*}
\boldsymbol{A}(t) \times \boldsymbol{B}(t)=\boldsymbol{A}_{R} \times \boldsymbol{B}_{R} \cos ^{2}(\omega t)+\boldsymbol{A}_{I} \times \boldsymbol{B}_{I} \sin ^{2}(\omega t)-\frac{1}{2} \hat{\boldsymbol{A}}_{R} \times \boldsymbol{B}_{I}+\boldsymbol{A}_{I} \times \boldsymbol{B}_{R} \emptyset \sin 2 \omega t \tag{1.3.7}
\end{equation*}
$$

The time-average value of $\boldsymbol{A}(t) \times \boldsymbol{B}(t)$ is then

$$
\begin{equation*}
\langle\boldsymbol{A}(t) \times \boldsymbol{B}(t)\rangle=\frac{1}{2} \bigcup_{\boldsymbol{A}_{R}} \times \boldsymbol{B}_{R}+\boldsymbol{A}_{I} \times \boldsymbol{B}_{I} \emptyset \tag{1.3.8}
\end{equation*}
$$

If we take the cross product of \boldsymbol{A} and \boldsymbol{B}^{*}, we then get

$$
\begin{equation*}
\boldsymbol{A} \times \boldsymbol{B}^{*}=\boldsymbol{A}_{R} \times \boldsymbol{B}_{R}+\boldsymbol{A}_{I} \times \boldsymbol{B}_{I}+j\left(\boldsymbol{A}_{I} \times \boldsymbol{B}_{R}-\boldsymbol{A}_{R} \times \boldsymbol{B}_{I}\right) \tag{1.3.9}
\end{equation*}
$$

We thus see that

$$
\begin{equation*}
\left.\langle\boldsymbol{A}(t) \times \boldsymbol{B}(t)\rangle=\frac{1}{2} \operatorname{Re} \right\rvert\, \boldsymbol{A} \times \boldsymbol{B} * \psi \tag{1.3.10}
\end{equation*}
$$

This rule will be very important when we encounter the concept of Poynting's power-density vector.

